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Abstract Accurate precipitation estimates are critical to simulating seasonal snowpack evolution. We
conduct and evaluate high‐resolution (4‐km) snowpack simulations over the western United States (WUS)
mountains in Water Year 2013 using the Noah with multi‐parameterization (Noah‐MP) land
surface model driven by precipitation forcing from convection‐permitting (4‐km) Weather Research
and Forecasting (WRF) modeling and four widely used high‐resolution datasets that are derived from
statistical interpolation based on in situ measurements. Substantial differences in the precipitation amount
among these five datasets, particularly over the western and northern portions of WUS mountains,
significantly affect simulated snow water equivalent (SWE) and snow depth (SD) but have relatively
limited effects on snow cover fraction (SCF) and surface albedo. WRF generally captures observed
precipitation patterns and results in an overall best‐performed SWE and SD in the western and northern
portions of WUS mountains, where the statistically interpolated datasets lead to underpredicted
precipitation, SWE, and SD. Over the interior WUS mountains, all the datasets consistently
underestimate precipitation, causing significant negative biases in SWE and SD, among which the results
driven by the WRF precipitation show an average performance. Further analysis reveals systematic
positive biases in SCF and surface albedo across the WUS mountains, with similar bias patterns and
magnitudes for simulations driven by different precipitation datasets, suggesting an urgent need to
improve the Noah‐MP snowpack physics. This study highlights that convection‐permitting modeling with
proper configurations can have added values in providing decent precipitation for high‐resolution
snowpack simulations over the WUS mountains in a typical ENSO‐neutral year, particularly over
observation‐scarce regions.

1. Introduction

Snowpack is a critical component of climate and weather systems, because of its high albedo, low roughness
length, low thermal conductivity, and consequently its control and modulation in surface water and energy
balance and feedback to the atmosphere (e.g., Barlage et al., 2010; Betts et al., 2014; Chen, Barlage, et al.,
2014; Flanner et al., 2011; Minder et al., 2016, 2018). Mountain snowpack, in particular, plays an important
role in hydrological applications by influencing snowmelt‐induced streamflow and hence freshwater
availability, irrigation for agriculture, potential energy for hydropower, river flows for fish spawning, and
natural hazards such as droughts and floods (e.g., Bales et al., 2006; Barnett et al., 2005; Clark et al., 2011;
Essery et al., 2009; Ullrich et al., 2018). For instance, in the western United States (WUS)mountainous areas,
snowpack accounts for about 70% of the total runoff and supplies water demands for millions of people (Li
et al., 2017; Mote et al., 2018). However, theWUS snowpack has experienced widespread declines in the past
decades (Mote et al., 2005; Mote et al., 2018; Pederson et al., 2011) and is projected to continue decreasing
under a future warming climate (e.g., Cayan et al., 2010; Rasmussen et al., 2011; Godsey et al., 2014; Li
et al., 2017; Berg & Hall, 2017; Gergel et al., 2017; Musselman et al., 2017; Huning & AghaKouchak, 2018;
Rhoades, Ullrich, & Zarzycki, 2018, Rhoades, Jones, & Ullrich, 2018; Marshall et al., 2019; Sun et al.,
2019). Therefore, it is imperative to accurately simulate snowpack evolution in order to support weather
and hydrological forecasts, climate modeling and projection, and water resource management, especially
over mountainous regions.
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Snowpack simulations are tightly related to both snow process modeling and atmospheric forcing (e.g.,
Barlage et al., 2010; Chen, Barlage, et al., 2014; He, Takano, & Liou, 2017; Henn et al., 2018; Minder et al.,
2016). Precipitation, one primary driver for snowpack change and variability, has been shown to
significantly contribute to the uncertainty in snow prediction and associated hydrological applications over
mountains (Gutmann et al., 2012; Henn et al., 2018; Lundquist et al., 2015; Mote et al., 2005; Scalzitti et al.,
2016). Moreover, it is particularly challenging to obtain accurate precipitation estimates with enough spatio-
temporal coverage and resolution over data‐scarce complex terrain due to complicated terrain–flow–
precipitation interactions (Garvert et al., 2007; Houze, 2012; Mott et al., 2014). Previous studies further
suggested that a fine horizontal resolution (e.g., less than ~10 km) is one of the key factors contributing to
adequate simulations of precipitation and hence snowpack over mountains (Ikeda et al., 2010; Leung &
Qian, 2003; Rasmussen et al., 2011).

Enormous efforts have been made to obtain accurate and high‐resolution precipitation estimates across the
continental United States. Direct ground‐based measurements are usually considered to be the most
accurate but limited in spatial distribution. Particularly in the WUSmountainous areas, in situ (gauge) mea-
surements are far too sparse to represent the strong spatial variability of precipitation (Jing et al., 2017;
Livneh et al., 2015) and may suffer from undercatch or other sampling errors (Bales et al., 2006; Clark &
Slater, 2006; Yang et al., 1998), while ground‐based radar measurements show limited effectiveness due to
terrain blocking (Henn et al., 2018; Westrick et al., 1999). Thus, it is not adequate to use the point‐scale pre-
cipitation measurements for regional snowpack studies over mountains. Additionally, satellite retrievals
using passive or active remote sensing techniques are able to provide gridded precipitation distributions with
large spatial coverage but lack sufficient spatiotemporal accuracy and resolution particularly over complex
terrain (Ebert et al., 2007; Hou et al., 2014).

One common practice in hydrological modeling is to produce high‐resolution gridded precipitation
estimates by using statistical interpolation techniques based on ground‐based (typically gauge) measure-
ments with topographical and microclimate adjustments over mountains (e.g., Daly et al., 2008; Livneh
et al., 2015; Newman et al., 2015; Xia et al., 2012). However, these gridded precipitation products are still
associated with large uncertainty over complex terrain, because of biases from statistical interpolation meth-
ods, sparse measurement networks at higher elevations, and measurements that are often cited in canopy‐
free locations (Daly et al., 2008; Gutmann et al., 2012; Lundquist et al., 2015). As a result, the uncertainties
and differences across datasets are expected to be larger in mountains with higher elevations (Henn et al.,
2018; Jing et al., 2017). More importantly, the terrain‐aware statistical interpolation methods depend on
current/historical precipitation patterns and mainly account for the topographical and microclimate effects,
which miss other key factors and physical processes that control precipitation distributions, such as moun-
tain waves, atmospheric dynamics interacting with cloud microphysics, and local frontal systems (Garvert
et al., 2007; Gutmann et al., 2012). This could introduce artifacts in interpolation processes under
current/historical climate and further prevents an accurate precipitation projection in future climate, where
mountain‐precipitation dynamics and interactions may change (Gutmann et al., 2012; Rasmussen
et al., 2011).

Recently, significant progress has been made in high‐resolution (particularly convection‐permitting)
modeling of precipitation over complex terrain (Ikeda et al., 2010; Liu et al., 2017; Prein et al., 2015;
Rasmussen et al., 2014), with the advantages of improved topographical features, physical representation
of mountain‐precipitation interactions, and avoided errors from convective parameterizations. For example,
convection‐permitting (≤4 km) model simulations with proper configurations have been shown to be able to
reasonably capture the distribution and amount of seasonal precipitation, snowfall, and hence snowpack
evolution over the WUS mountains (Ikeda et al., 2010; Jing et al., 2017; Wang et al., 2018). However, the
model performance at high resolution also relies on the choice of physical parameterizations, including
microphysics schemes (e.g., cloud nucleation and growth), macrophysics schemes (e.g., cloud cover and
longwave feedbacks), convection schemes (e.g., rain and snow formation), boundary layer schemes (e.g.,
atmosphere‐land coupling), and land surface schemes (e.g., snow–rain partitioning, snow cover fraction,
snow aging, and albedo evolution). Liu et al. (2011) found that cloud microphysics schemes have important
effects on high‐resolution precipitation modeling over the WUS mountains. A review paper by Lundquist
et al. (2019) suggested that well‐configured high‐resolution atmospheric models can simulate total annual
precipitation and snowfall better than gridded datasets derived from gauge measurements over
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mountains, whereas model estimates of precipitation can still vary significantly due to different configura-
tions, which require optimization and improvement by using a wide range of observations. Similarly, recent
studies (O'Brien et al., 2016; Rhoades, Ullrich, Zarzycki, Johansen, et al., 2018) also indicated that increasing
spatial resolution of global climate models may not necessarily improve mountain precipitation and hydro-
climate simulations, which depends on the selection of model physical schemes.

The progress in convection‐permitting modeling naturally leads to a question: can convection‐permitting
simulations provide viable precipitation forcing for simulating mountain snowpack? A systematic assess-
ment of this question will further advance the understanding and quantification of the precipitation
uncertainty and its impact on snowpack modeling in complex terrain. Therefore, this study seeks to (1) test
the hypothesis that convection‐permitting modeling with proper configurations is capable of producing ade-
quately accurate precipitation for high‐resolution snowpack simulations over mountains, which is as good
as (if not better than) statistically interpolated observational datasets, (2) assess the differences across various
precipitation products and associated impacts on snowpack simulations in various WUS subregions, and (3)
highlight implications for future model improvements of snowpack physics in the context of precipitation
uncertainty. The WUS mountains are selected for this study, because they are particularly important for
water resource management and require accurate weather and hydrological forecasts to instill resilience
in water conveyance, especially as the climate continues to change.

2. Method and Data
2.1. Model Descriptions and Simulations

We conduct high‐resolution (4‐km) snowpack simulations over the WUS (Figure 1) using a widely used
land surface model (LSM), Noah with multi‐parameterization (Noah‐MP; Niu et al., 2011), through the
high‐resolution land data assimilation (HRLDAS) framework (Chen et al., 2007). The HRLDAS system
was developed at the National Center for Atmospheric Research (NCAR) for the purpose of initializing land‐
state variables to support high‐resolution LSM simulations and the coupling with WRF. Essentially, it is an
uncoupled land surface modeling system, which integrates the observation/reanalysis‐based atmospheric forcing
data, fine‐scale static surface fields (e.g., soil texture), and time‐varying surface characteristics (e.g., vegetation) to
drive Noah‐MP LSM simulations. Thus, Noah‐MP is the heart of the HRLDAS framework/infrastructure.

We drive the Noah‐MP simulations using hourly atmospheric forcing data. We use five different precipita-
tion forcing datasets (see section 2.2) to assess the precipitation uncertainty and its impact on snowpack
simulations. The non‐precipitation atmospheric forcing conditions (i.e., humidity, temperature, pressure,
wind, downward solar, and longwave radiation) are obtained from convection‐permitting (4‐km) WRF
model simulations (Liu et al., 2017). More details of the WRF simulations are provided in section 2.2.
We perform this study for Water Year 2013 (October 2012–September 2013), an ENSO‐neutral year with
normal annual precipitation over the WUS (i.e., close to the regional climatological mean value; see
https://www.ncdc.noaa.gov/cag/), to avoid ENSO‐related uncertainty/biases from atmospheric forcing
data. Our analyses particularly focus on October to June when mountain snow is present in the water
year. We spin up the Noah‐MP model for 5 years before official simulations (at the 4‐km WRF forcing
grids) and archive hourly results. The Noah‐MP simulations are conducted on the NCAR's Cheyenne
supercomputer using 288 CPU cores (on eight computing nodes), which totally take ~50,000 core hours
and output ~4.2 TB data for all simulation cases in this study. To highlight the precipitation impact, we
use the typical default Noah‐MP model physics for all simulations, which has been well documented in
Niu et al. (2011). The uncertainty associated with model physics is discussed in section 4 and will be inves-
tigated in detail in a follow‐up study.

Here we briefly summarize the important snow‐related Noah‐MPmodel features. The partitioning of preci-
pitation into rainfall and snowfall is a function of surface air temperature following the Jordan (1991) para-
meterization. Noah‐MP accounts for snow interception and throughfall by vegetation canopy with
distinction between water and snow/ice. The snow interception processes include loading and unloading
of snowfall, frost/sublimation, melting of intercepted snow and refreezing of meltwater, and
evaporation/dew (Niu & Yang, 2004). The loading rate is affected by the maximum loading capacity and
snowfall rate, while the unloading rate is a function of wind speed and canopy temperature. The radiative
transfer throughout canopy and intercepted snow is computed using the two‐stream radiative transfer
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approximation (Dickinson, 1983) based on prescribed snow and canopy optical properties. Noah‐MP
includes a multilayer (up to three) snowpack on the ground, depending on snow depth. The ground snow
cover fraction is parameterized as a function of snow density and depth (Niu & Yang, 2007). The snow
density, snow depth, snow temperature, snow ice, and water content are modeled dynamically by
accounting for snow aging and melting as well as layer compaction. The snowpack albedo (for direct and
diffuse radiation) is computed using the Canadian LAnd Surface Scheme (Verseghy, 1991), which
accounts for fresh snow albedo and snow aging (i.e., albedo decaying with time). The ground albedo is
then calculated as the area‐weighted average of bare soil and snow albedos. There are eight soil
types/textures with prescribed albedos (0.10–0.27 and 0.05–0.15 for dry and saturated soil visible albedos,
respectively, with doubled values for near‐infrared [NIR] albedos) in Noah‐MP. We use the soil type with
medium albedos (i.e., 0.18 and 0.09 for dry and saturated soil visible albedos, respectively) in this study.
The overall surface albedo is determined by both ground albedo and canopy radiative transfer
calculations. The soil and canopy cover distributions depend on the spatiotemporal distributions of land
cover types obtained from the 1‐km Moderate Resolution Imaging Spectroradiometer (MODIS) land cover
dataset (available at http://www2.mmm.ucar.edu/wrf/users/download/get_sources_wps_geog.html).

2.2. Precipitation Forcing

We use four publicly available gridded precipitation datasets derived from statistical interpolation based on
in situmeasurements across the continental United States, including the Parameter‐elevation Regressions on
Independent SlopesModel (PRISM) dataset (Daly et al., 2008; hereinafter PRISM), the North American Land
Data Assimilation System (NLDAS) version 2 dataset (Xia et al., 2012; hereinafter NLDAS2), the Livneh et al.
(2015) dataset (hereinafter L15), and the Newman et al. (2015) dataset (hereinafter N15). For comparison, we
also use the precipitation produced by convection‐permitting WRF simulations (Liu et al., 2017; hereinafter
WRF). These datasets reflect important independent efforts to estimate precipitation over the WUS moun-
tains and have been widely used in previous studies (Henn et al., 2018; Jing et al., 2017; Lundquist et al.,

Figure 1. The topography over the western United States with eight subregions, including the Pacific Northwest mountains, Sierra Nevada mountains, Montana‐
Idaho‐Oregon (MT‐ID‐OR) mountains, Wyoming‐Montana (WY‐MT) mountains, Nevada mountains, Utah mountains, Colorado mountains, and Arizona‐New
Mexico (AZ‐NM) mountains. Also shown are the Snowpack Telemetry site locations (circles). Areas only include mountains (i.e., above subregional mean eleva-
tions) are shown in Figure S1.
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2015; Musselman et al., 2018). Here we briefly describe each dataset and summarize major data features in
Table 1.

We use the 4‐km daily PRISM dataset that applies an empirical statistical model to interpolate climate vari-
ables (e.g., precipitation and temperature) into fine‐scale grids based on a variety of ground measurement
networks. For precipitation measurements, the Snowpack Telemetry (SNOTEL) network operated by the
Natural Resources Conservation Service (NRCS) and the National Weather Service (NWS) Cooperative
Observer Program (COOP) gauge network are the two primary sources. The statistical interpolation adopts
an empirical precipitation‐elevation regression for topographic correction, which also accounts for coastal
proximity, rain shadows, and topographic aspects (Daly et al., 2008). The errors of PRISM precipitation over
high‐elevation WUS terrain are estimated to be 10 to >30% in annual values and are attributable to data
interpolation process, measurement data quality, and sparsity of measurement sites over mountains (Daly
et al., 2008). Recent evaluations (Strachan & Daly, 2017) further revealed that the 4‐km PRISM estimates
of snowfall are significantly underestimated at several high‐elevation sites over the semiarid eastern Sierra
Nevada mountains and overestimated at some low‐elevation sites, because of surface temperature biases.

The L15 and NLDAS2 precipitation datasets are available at daily 1/16° (~6 km) and hourly 1/8° (~12 km)
resolutions, respectively. Both datasets are produced through statistical interpolation relying on ground
measurements and are scaled to match the 30‐year PRISM climatology (1981–2010 for L15 and 1961–1990
for NLDAS2) for each month as further topographic correction. The data sources for L15 are exclusively
the NWS COOP gauge measurements that have >20 years of valid data (Livneh et al., 2015), while
NLDAS2 uses the daily gauge‐based precipitation analyses from the National Oceanographic and
Atmospheric Administration (NOAA) Climate Prediction Center and is then disaggregated to hourly

Table 1
Main Methodological Assumptions in Deriving the Precipitation Datasets Used in this Study to Evaluate the Western United States

Dataseta Data type Resolution Observation source
Interpolation

method Topographic correction
Uncertainty or quality

control

PRISM
(Daly
et al.,
2008)

observation‐
based
statistical
interpola-
tion

daily 4 km multiple networks
(e.g., NRCS
SNOTEL, NWS
COOP)

inverse
distance,
cluster
weighting

empirical precipitation‐elevation regression
accounting for coastal proximity, rain
shadows, and topographic aspects

10 to >30% errors for
annual values in high‐
elevation WUS terrains

NLDAS2
(Xia
et al.,
2012)

observation‐
based
statistical
interpola-
tion

hourly 1/
8° (~12
km)

NOAA CPC optimal
interpola-
tion

scaled to match PRISM 1961–1990 monthly
climatology

uncertainty from statistical
interpolation and
measurement sparsity

L15
(Livneh
et al.,
2015)

observation‐
based
statistical
interpola-
tion

daily 1/16°
(~6 km)

NWS COOP inverse
distance

scaled to match PRISM 1981–2010 monthly
climatology, a fixed lapse rate,
MTCLIMb

‐derived elevation dependency

only sites with >20 years of
valid data

N15
(Newm-
an
et al.,
2015)

observation‐
based
statistical
interpola-
tion

daily 1/8°
(~12
km)

multiple networks
(e.g., NRCS
SNOTEL, NWS
COOP)

probabilistic
interpola-
tion

multiple linear regression using topographic
predictors (elevation, aspect, and location)

uncertainty range
generated from 100‐
member

ensemble

WRF (Liu
et al.,
2017)

convection‐
permitting
model
simulation

daily 4 km — — physically modeled uncertainty from model
physics; no bias from
convective
parameterization

aThe PRISM dataset is available at http://www.prism.oregonstate.edu/. The NLDAS2 dataset is available at https://ldas.gsfc.nasa.gov/nldas/NLDAS2forcing.
php. The Livneh et al. (2015) dataset is available at ftp://livnehpublicstorage.colorado.edu/public/Livneh.2016.Dataset/. The Newman et al. (2015) dataset is
available at https://doi.org/10.5065/D6TH8JR2. The 4‐km WRF dataset (Liu et al., 2017) is available at https://rda.ucar.edu/datasets/ds612.0/. bMTCLIM:
mountain microclimate simulator (Bohn et al., 2013).
Abbreviations: COOP=Cooperative Observer Program; NLDAS=North American Land Data Assimilation System; NOAA=National Oceanographic and
Atmospheric Administration; NRCS=Natural Resources Conservation Service; NWS=National Weather Service; PRISM=Parameter elevation Regressions on
Independent Slopes Model; SNOTEL=Snowpack Telemetry; WRF=Weather Research and Forecasting; WUS=western United States.
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frequency based on the NWS Doppler radar‐based analyses (Xia et al., 2012). We note that L15 has some
similarities to PRISM, due to the use of NWS COOP measurements and the scaling of L15 to match
the PRISMmonthly climatology. However, there are still many differences between L15 and PRISM, includ-
ing the use of more data sources in PRISM, different data quality control procedures, and different
interpolation/mapping algorithms. This could lead to different daily, monthly, and seasonal precipitation
variations for individual years in the two datasets, which is reflected by our following analysis (section 3.1).

The N15 dataset with a daily 1/8° (~12 km) resolution is developed through probabilistic interpolation
(Clark & Slater, 2006) based on several measurement networks, including the NRCS SNOTEL and NWS
COOP gauge data. The topographic correction, independent of PRISM, is then performed via multiple linear
regression using topographic predictors (i.e., elevation, aspect, and location). To explicitly quantify the
uncertainty related to precipitation‐topography regression, a 100‐member ensemble of gridded precipitation
is further generated by using spatially correlated random fields (Clark & Slater, 2006; Newman et al., 2015).
In this study, we use the 5, 50, and 95% ensemble members (hereinafter N15‐5%, N15‐50%, and N15‐95%)
based on their total accumulated precipitation from October to June in each grid in order to demonstrate
the 90% uncertainty range from the N15 ensemble dataset.

Compared with the statistically interpolated datasets, the convection‐permitting WRF simulations are
advantageous in physically and dynamically representing terrain–flow–precipitation interactions and hence
orographic precipitation as well as projecting future precipitation changes in complex terrain. Particularly
over the high‐elevated mountains with rather scarce ground measurements, the WRF precipitation can
avoid uncertainties/biases from statistical interpolation methods (e.g., missing key physical links and pro-
cesses) and measurement sparsity/unrepresentativeness. Here we use the 4‐km hourly WRF precipitation
(Liu et al., 2017) to assess whether it could outperform the preceding statistically interpolated observational
datasets in driving snowpack simulations over the WUSmountains. Specifically, the 4‐kmWRF simulations
employed the WRF version 3.4.1 with 51 vertical levels up to 50 hPa and the following key physics schemes:
the Yonsei University planetary boundary layer scheme (Hong et al., 2006), the Thompson cloud microphy-
sics scheme (Thompson & Eidhammer, 2014), the revised Monin–Obukhov surface layer scheme (Jimenez
et al., 2012), the Noah‐MP land surface scheme (Niu et al., 2011), the Rapid Radiative Transfer Model for
General CirculationModels shortwave and longwave radiation scheme (Iacono et al., 2008), and no cumulus
parameterizations. Spectral nudging was additionally applied with several other upgrades in model parame-
terizations, including an improved lake water temperature treatment, a new microphysics‐based snow–rain
partition, modified snow cover and patchy snow treatments, and the inclusion of heat transport from
precipitation to ground. The WRF model simulations were driven by the initial, boundary, and nudging
meteorological fields from 6‐hourly 0.7° ERA‐Interim reanalysis data (Dee et al., 2011). More details are pro-
vided by Liu et al. (2017). This WRF precipitation dataset has also been used in previous studies (e.g., Jing
et al., 2017; Musselman et al., 2017; Wang et al., 2018). We should note that the WRF precipitation may
be sensitive to model configurations such as cloud microphysics (e.g., Liu et al., 2011). Thus, WRF simula-
tions with the same spatial resolution but different model physical schemes may result in substantially dif-
ferent precipitation estimates (Lundquist et al., 2019). The model configuration of the 4‐km WRF
simulations used in this study has been properly optimized by Liu et al. (2017) to generate relatively accurate
meteorological fields in the continental United States during 2000–2013.

For a consistent spatiotemporal resolution in all simulations, the statistically interpolated precipitation data-
sets are resampled into the 4‐km WRF forcing grids using bilinear interpolation following previous studies
(Henn et al., 2018; Jing et al., 2017). For datasets with daily frequency, we further disaggregate them into
hourly frequency by applying the WRF hourly variation. Specifically, we scale the WRF hourly precipitation
by the ratio of daily total precipitation in the target dataset to that in the WRF dataset. As such, the target
dataset keeps its daily total precipitation unchanged but has hourly variation patterns similar to the WRF
precipitation. For the days when there is nonzero precipitation in the target dataset but zero precipitation
in the WRF dataset, we use the monthly averaged WRF hourly variation or annually averaged variation
(if there is still zero WRF precipitation throughout the month).

2.3. Observations

Weuse a suite of observational datasets (see Table 2 for summary) to evaluate simulated snowpack properties
over theWUSmountains. For SWE and precipitation, we use the NRCS SNOTEL in situ daily measurements
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(Serreze et al., 1999) at ~800 sites (with typical elevations of 600–3600m) (Figure 1), which has often served as
“ground truth” in the region. The SWE and precipitation are measured by snow pillows and gauges,
respectively. The SNOTEL gauges are typically in small forest clearings to reduce wind‐induced snow drift,
with about 10–15% snowfall/precipitation undercatch (Yang et al., 1998). The snow pillow measurements
may suffer from overestimation caused by drifting snow mainly for dry snow over high‐elevation sites
(Meyer et al., 2012).

For SD, we use the daily 1‐km product from the NOAA National Operational Hydrologic Remote Sensing
Center Snow Data Assimilation System (SNODAS), a modeling and data assimilation system for the conti-
nental United States. It assimilates snow data from ground, airborne, and satellite measurements into a phy-
sically based mass‐ and energy‐balance National Operational Hydrologic Remote Sensing Center snow
model. Detailed information has been documented in Carroll et al. (2001). Hedrick et al. (2015) showed that
SNODAS tends to underestimate SD in areas with deep snowpack and dense forests in Colorado Rocky
Mountains and has relatively larger biases in alpine regions than forested regions. Similar uncertainty and
biases in the SNODAS SWE product over the same mountainous region were also found by Clow et al.
(2012). Wrzesien et al. (2017) indicated that SNODAS is generally consistent with some other reference data-
sets in SWE estimates over Sierra Nevada mountains.

To further supplement model assessment of SWE and SD, we also use the recent University of Arizona (UA)
daily 4‐km reanalysis dataset. The product is generated by assimilating in situ SWE and SD measurements
and the 4‐km PRISM temperature and precipitation data across the continental United States. Detailed
descriptions have been provided in Broxton et al. (2016).

For snow cover fraction (SCF), we use the MODIS Terra and Aqua Level 3 Version 6 products with a daily
0.05° (~5 km; climate modeling grid) resolution (MOD10C1 and MYD10C1). The dataset is derived based on
the Normalized Difference Snow Index snow cover from the MODIS daily 500‐m grid dataset. Detailed
descriptions are provided in Hall and Riggs (2016). Since extensive cloud cover could degrade the SCF accu-
racy, we use the data with less than 20% cloud cover and quality flags of ≤2 (“OK” or better) in order to

Table 2
Observational Datasets Used for Model Evaluation in this Study

Variable Dataset namea Dataset type Resolution Quality control or note Referenceb

SWE SNOTEL in situ daily 762
sites

potential overestimates due to drifting snow Serreze et al. (1999)

SWE UA reanalysis daily 4 km assimilation of in situ snow data and PRISM temperature &
precipitation data

Broxton et al. (2016)

SD SNODAS reanalysis daily 1 km assimilation of snow data from ground, airborne, and satellite
observations

Carroll et al. (2001)

SD UA reanalysis daily 4 km assimilation of in situ snow data and PRISM temperature &
precipitation data

Broxton et al. (2016)

SCF MODIS/Terra
(MOD10C1)

satellite daily 0.05° quality flag ≤2 (“OK” or better), cloud cover < 20% Hall and Riggs (2016)

SCF MODIS/Aqua
(MYD10C1)

satellite daily 0.05° quality flag ≤2 (“OK” or better), cloud cover < 20% Hall and Riggs (2016)

SCF IMS satellite in
situ

daily 4 km mapping from satellite and in situ data National Ice Center
(2008)

ALBD MODIS (MCD43C3) satellite daily 0.05° quality flag ≤3 (“≤25% fill values” or better) Schaaf and Wang
(2015)

T2M PRISM reanalysis daily 4 km statistical interpolation based on in situ data Daly et al. (2008)
PRCP SNOTEL in situ daily 762

sites
10–15% precipitation undercatch Serreze et al. (1999)

aSee text for dataset full names. bThe SNOTEL observations are available at https://www.wcc.nrcs.usda.gov/snow/. The SNODAS data is available at http://
nsidc.org/data/G02158/. The University of Arizona (UA) snow products are available at https://climate.arizona.edu/data/UA_SWE/. The IMS snow cover data
is available at https://nsidc.org/data/G02156#. TheMODIS snow cover fraction datasets are available at https://nsidc.org/data/MOD10C1 and https://nsidc.org/
data/MYD10C1, respectively. The MODIS surface albedo product is available at https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/
mcd43c3_v006.
Abbreviations: ALBD=Surface Albedo; IMS= Ice Mapping System; MODIS= Moderate Resolution Imaging Spectroradiometer; PRCP=Precipitation;
PRISM=Parameter elevation Regressions on Independent Slopes Model; SCF=Snow Cover Fraction; SD=Snow Depth; SNODAS=Snow Data Assimilation
System; SNOTEL=Snowpack Telemetry; SWE=Snow Water Equivalent; T2M=Surface 2‐m Temperature; UA=University of Arizona.
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obtain enough spatiotemporal data coverage with adequate quality. For additional independent SCF obser-
vations, we also use the NOAA Interactive Multisensor Snow and Ice Mapping System (IMS) daily 4‐km
snow cover product (National Ice Center, 2008), which is derived from the analysis of various observations
including in situ and satellite data.

For surface albedo, we use theMODIS Level 3 Version 6 product with a daily 0.05° (~5 km; climate modeling
grid) resolution (MCD43C3), including the direct (black sky, local solar noon) and diffuse (white sky) albe-
dos at visible (0.3–0.7 μm), NIR (0.7–5.0 μm), and shortwave (0.3–5.0 μm) bands. Detailed data descriptions
are presented in Schaaf and Wang (2015). To achieve both adequate data quality and spatiotemporal cover-
age, we use the data with quality flags of ≤3 (“≤25% fill values and ≤75% full inversions” or better).

For surface air temperature, we use the 4‐km daily PRISM product derived from statistical interpolation
based on various measurement networks (e.g., NWS COOP) with topographic correction (Daly et al.,
2008). This dataset has been widely used to evaluate model simulations of surface temperature (Liu et al.,
2017; Scalzitti et al., 2016). Strachan and Daly (2017) evaluated the 4‐km PRISM surface temperature pro-
duct by comparing with in situ observations over the semiarid eastern Sierra Nevadamountains. They found
a consistent cold bias in daily temperature minimum associated with elevation throughout all seasons and
sites, while the cold bias in daily temperaturemaximum varies with season and is associated with solar expo-
sure and heat loading.

To compare observations and model simulations at a consistent spatial resolution, we resample model
results into observational grids/sites using bilinear interpolation following previous studies (e.g., Liu et al.,
2017). For detailed analysis, we further divide the entire WUS mountainous areas into eight subregions
(see Figures 1 and S1), including the Pacific Northwest mountains, Sierra Nevada mountains, Montana‐
Idaho‐Oregon (MT‐ID‐OR) mountains, Wyoming‐Montana (WY‐MT) mountains, Nevada mountains,
Utah mountains, Colorado mountains, and Arizona‐New Mexico (AZ‐NM) mountains.

3. Results and Discussions
3.1. Precipitation

Figure 2 presents the spatial differences in accumulated precipitation throughout October to June (when
mountain snow is present in the water year) between the WRF and statistically interpolated precipitation
datasets (i.e., PRISM, NLDAS2, L15, N15‐5%, and N15‐95%) over the WUS. In general, the precipitation var-
iation across these datasets is substantial, particularly over mountains, with strong spatial heterogeneity.
Compared with the PRISM, NLDAS2, and L15 precipitation, the WRF precipitation is much higher (by up
to ~400 mm accumulated during the period) in the Pacific Northwest, Sierra Nevada, and WY‐MT moun-
tains (in contrast to the much lower WRF precipitation near the coast), which also tends to be at the high
end of the N15 90% uncertainty range in these mountains (Figure S2), while NLDAS2 shows the lowest
precipitation in the three subregional mountains. On the contrary, WRF tends to have lower accumulated
precipitation than the other datasets in the interior WUS mountainous areas (i.e., Nevada, Utah,
Colorado, and AZ‐NM), with subregional mean differences <50 mm (Figures 2 and S2). The pattern of pre-
cipitation differences over the MT‐ID‐OR mountains is more complicated, with many small‐scale features
(e.g., patchy distribution of positive and negative differences), likely reflecting uncertainties from complex
topography–precipitation interactions. We find that L15 generally agrees with PRISM in the pattern and
subregional mean values (differences less than ~20 mm) of accumulated precipitation across the WUS
mountains, while the N15 90% uncertainty range covers the majority of variations across the other datasets
(Figure S2). Moreover, previous studies (Henn et al., 2018; Jing et al., 2017) suggested that the disagreement
among the statistically interpolated precipitation datasets is expected to be larger over the WUS mountains
with higher elevations due to the lack of in situ measurements (used for the dataset development). Overall,
the subregional mean precipitation from different datasets is relatively consistent in the interiorWUSmoun-
tainous areas but largely differs in the western and northern portions of WUS mountainous areas (i.e.,
Pacific Northwest, Sierra Nevada, MT‐ID‐OR, and WY‐MT), where the accumulated precipitation tends to
be high.

We further evaluate the precipitation datasets against SNOTEL observations over theWUSmountains. WRF
well captures the observed accumulated precipitation over the MT‐ID‐OR and WY‐MT mountains with
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differences <5% but slightly (~10%) overestimates over the Pacific Northwest and Sierra Nevada mountains
mainly due to the too strong precipitation during early winter (Figure 3). The precipitation overestimate has
also been seen in the 4‐km WRF 13‐year climatological simulations (Liu et al., 2017) and simulations in
other individual years (Chen, Liu, et al., 2014). We should note that the SNOTEL precipitation
measurements typically suffer from ~10% undercatch errors (Yang et al., 1998). However, the statistically
interpolated datasets (PRISM, NLDAS2, and L15) tend to underestimate the precipitation in the four
subregions (Figure 3), with slight (<10%) biases for PRISM but substantial (up to >20%) biases for NLDAS2
(Table S1). Currier et al. (2017) suggested that the PRISM estimates of frozen precipitation tend to be biased
low during cold seasons in the Olympic Mountains (one of the Pacific Northwest mountainous areas). The
L15 precipitation is consistent with observations in the Pacific Northwest and WY‐MT mountains but is
largely (~30%) underestimated in the Sierra Nevada mountains. Lundquist et al. (2015) also found that the

Figure 2. Spatial distributions of accumulated precipitation (unit: mm) throughout October 2012 to June 2013 from the
Weather Research and Forecasting (WRF) dataset, and accumulated precipitation differences (unit: mm) between the
WRF and other datasets (i.e., PRISM, NLDAS2, L15, N15‐5%, and N15‐95%; see Table 1 and text for details).

Figure 3. Accumulated precipitation during Water Year 3013 averaged across the SNOTEL sites in each subregion (see Figure 1) from the daily SNOTEL observa-
tions (black lines) and different precipitation datasets used in this study, including the WRF (red lines), PRISM (blue lines), NLDAS2 (green lines), L15 (orange
lines), and 90% uncertainty range of N15 (purple shaded areas) datasets (see Table 1 and text for details). Also shown is the spatial variability (one standard
deviation) of observations in each subregion (gray‐shaded area). Note that the SNOTEL observations show strong spatial heterogeneity/variability. The figure
legend is shown in the last panel.

10.1029/2019JD030823Journal of Geophysical Research: Atmospheres

HE ET AL. 12,639



statistically interpolated datasets tend to miss some individual storm events in the Sierra Nevada, leading to
~20% underprediction in annual precipitation. Strachan and Daly (2017) showed that the PRISM snowfall
estimates are underestimated at some high‐elevation sites in the semiarid Sierra Nevada mountains. The
N15 90% uncertainty range covers the observations (very close to N15‐50%) in the Pacific Northwest and
Sierra Nevada mountains but slightly underestimates in the MT‐ID‐OR and WY‐MT mountains (Figure 3).

In contrast, all the datasets underestimate the accumulated precipitation in the interior WUS mountainous
areas (Nevada, Utah, Colorado, and AZ‐NM) compared with SNOTEL measurements (Figure 3).
Specifically, the WRF precipitation is significantly (15–30%) lower than observations in the four subregions.
This is due to the inadequate precipitation primarily occurring during mid‐autumn to winter, likely caused
by insufficient moisture transport from the west coast to the interior WUS regions (Rutz et al., 2014) and/or
biases from orographic and cloud microphysical effects on precipitation in WRF (Jing et al., 2017). The per-
formance of statistically interpolated datasets varies notably. NLDAS2 has the largest (20–30%) deviation
from observations across the four subregions (Table S1), whereas PRISM shows the smallest (10–20%) nega-
tive bias primarily because of its use of SNOTELmeasurements in the dataset development. The PRISM bias
may come from the statistical interpolation (Chen, Liu, et al., 2014). Daly et al. (2008) estimated that the
error of PRISM annual precipitation could be 20–30% over mountains with larger uncertainties in winter
than in summer. The L15 precipitation is relatively close (bias <10%) to observations in the Utah and
Colorado mountains but is largely (~30%) underestimated in the Nevada and AZ‐NM mountains.
Interestingly, even the N15‐95% precipitation is biased low in the four subregions. This highlights an urgent
need to improve precipitation estimates in these mountainous areas (Risser et al., 2019; Timmermans
et al., 2019).

Table S1 summarizes the performance statistics for each precipitation dataset compared with SNOTEL
measurements, including normalized mean bias (NMB), root mean square error (RMSE), and correlation
coefficient (r). Overall, the WRF precipitation shows the smallest NMB in the Sierra Nevada, MT‐ID‐OR,
WY‐MT, and Nevada mountains and gives an average performance in the remaining four subregions.
Among the statistically interpolated datasets, PRISM (NLDAS2) generally performs the best (worst) with
the lowest (highest) NMB and RMSE in the majority of WUS mountains. All the datasets reveal good tem-
poral correlation (r > 0.9) with observations. We also note that averaged over the entire WUS mountains,
the WRF precipitation indicates the best performance with the smallest NMB (−3.4%) and RMSE (4.9
mm). This, however, might be misleading because it is mainly due to an offset of positive and negative biases
in different subregions. Further calculations of the normalizedmean absolute value of bias show that PRISM
has the lowest bias (7.5%) averaged over the entire WUS mountains, while WRF, L15, and N15‐50% have
comparable biases (~15%).

3.2. Snow Water Equivalent

To assess the precipitation impact on snowpack simulations, we first compared SWE simulations driven by
different precipitation datasets with SNOTEL observations. We find that the WRF‐driven model results cap-
ture the observed SWE over the western and northern portions of the WUS mountainous areas (Pacific
Northwest, Sierra Nevada, MT‐ID‐OR, and WY‐MT) with differences of <50 mm, which overall outperform
the results based on the statistically interpolated datasets (Figure 4). This is primarily because of the rela-
tively well‐performed WRF precipitation in the four subregions. However, the model results reveal too slow
snow ablation in the Sierra Nevada mountains starting around mid‐March, which also occurs in the results
driven by the other precipitation datasets, likely due to the model deficiency in snow ablation physics (Chen,
Barlage, et al., 2014; Chen, Liu, et al., 2014) and/or cold biases in surface temperature in this area (see dis-
cussions below). The results based on PRISM, NLDAS2, and L15 precipitation systematically underestimate
SWE in the four subregions throughout winter and spring, particularly over the Pacific Northwest and Sierra
Nevada mountains (by up to 150–300 mm), which is probably caused by the underpredicted precipitation
(Figure 3). Among the three datasets, the PRISM‐driven and NLDAS2‐driven results have the smallest (up
to 17%) and largest (up to 47%) negative biases, respectively, across the four subregions (Figure 4 and
Table S1). In the interior WUS mountainous areas (Nevada, Utah, Colorado, and AZ‐NM), the SWE simula-
tions driven by bothWRF and statistically interpolated precipitation capture the observed temporal patterns
but are consistently lower than observations by up to ~150 mm (Figure 4), due to the strong precipitation
underestimates (Figure 3). Overall, the PRISM‐driven results are the closest to observations in the four
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subregions, while the WRF‐driven results are similar to those based on PRISM in the Nevada and Utah
mountains but moderately worse in the Colorado and AZ‐NM mountains. We note that the preceding
model bias patterns across the eight subregions are valid and robust even when averaged over the entire
subregional mountainous areas (instead of only the SNOTEL sites) by comparing with the UA gridded
SWE reanalysis data (Figure S3), except that the model underestimates are weaker due to lower UA SWE
values relative to SNOTEL observations (Figure S4).

Further analysis shows that model results driven by different precipitation datasets tend to underestimate
the peak SWE values and dates across the WUS mountains (Figure 5). This could be due to the insufficient
precipitation and/or deficient model treatment of interactions between canopy and snow (Chen, Liu, et al.,
2014). We find that the WRF‐driven results show the smallest biases for peak SWE (<40 mm) and dates
(within ~10 days) in the western and northern portions of the WUS mountainous areas, followed by the
PRISM‐driven results. In the interior WUS mountainous areas, the PRISM‐driven results generally outper-
form the others, with biases of 40–110 mm for peak SWE and less than ~20 days for peak dates, followed by

Figure 4. Same as Figure 3, but for daily snow water equivalent (SWE) from the SNOTEL observations and model simulations driven by different precipitation
datasets. Note that the SNOTEL observations show strong spatial heterogeneity/variability in each subregion.

Figure 5. Box plots for model biases (simulations minus observations) in maximum snow water equivalent (SWE) values (red) and date (blue) averaged over the
SNOTEL sites in each subregion (see Figure 1) during Water Year 2013. Model simulations are driven by different precipitation datasets, including the WRF,
PRISM, NLDAS2, L15, N15‐5%, and N15‐95% datasets (see Table 1 and text for details). The box includes the means (circles), medians (middle bars), interquartile
ranges (25th–75th percentiles), and maxima/minima (±1.5 × interquartile ranges; whiskers). Negative biases in SWE peak date means that model results reach
peaks earlier than observations.
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the results based on the WRF and L15 precipitation. Averaged over the entire WUS mountains, the WRF‐
driven results perform the best in peak SWE values (bias of about−64 mm) and as good as the PRISM‐driven
results in peak SWE dates (bias of about −5 days).

In addition to precipitation, surface temperature may also play an important role in SWE simulations
through altering snow melting and precipitation partitioning into snowfall and rainfall (Scalzitti et al.,
2016). Comparisons between model temperature and PRISM records indicate that model results driven by
different precipitation datasets consistently have cold biases (by up to 3 °C) over the WUS mountains
throughout October to May, except in the Nevada and AZ‐NMmountains (Figures 6 and S5). This is a com-
mon problem that also occurs in previous WRF‐driven Noah‐MP LSM simulations either for other indivi-
dual years (Chen, Liu, et al., 2014) or a long‐term (13 years) climatology (Liu et al., 2017). However, since
the cold bias mostly occurs below the freezing/melting point temperature (0 °C), except in the Sierra
Nevada, it only has a negligible impact on snowfall partitioning and snow melting in the model. While in
the Sierra Nevada mountains, the cold bias could contribute to excessive snowfall and too weak snow abla-
tion (depicted in Figure 4). We should note that the surface (2‐m) temperature differences among different
simulations are negligible (Figures 6 and S6) mainly due to the use of the same non‐precipitation

Figure 6. Central panel: Spatial distributions of surface (2‐m) temperature biases (simulations driven by the WRF preci-
pitationminus PRISM temperature observations) averaged throughout October 2012 to June 2013 over mountainous areas
(i.e., above subregional mean elevations; see also Figure S1). Spatial distributions of model biases based on the other
precipitation datasets are shown in Figure S5. Surrounding panels: Monthly mean surface (2‐m) temperature (unit: °C)
during October to August averaged over mountainous areas in each subregion from PRISM temperature observations
(black lines) and model results driven by different precipitation datasets, including the WRF (red lines), PRISM (blue
lines), NLDAS2 (green lines), L15 (orange lines), and 90% uncertainty range of N15 (purple shaded areas) datasets (see
Table 1 and text for details). Also shown is the spatial variability (one standard deviation) of observations in each subre-
gion (gray‐shaded area). Note that model simulations are all overlapped and the purple shaded areas are not visible, due to
rather small differences. The daily results are shown in Figure S6.
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atmospheric forcing data (particularly the temperature forcing exerted at a 10‐m height), although the
surface (2‐m) temperature is dynamically simulated in Noah‐MP based on land surface processes
and conditions.

Besides, the snow–rain partitioning parameterization may also affect snowfall and hence SWE simulations
in Noah‐MP. We further examine the influence of the other two snow–rain partitioning parameterizations
in Noah‐MP, which are functions of surface air temperature only, including the biosphere‐atmosphere
transfer scheme (BATS) and a simple scheme assuming all precipitation as snowfall when surface air tem-
perature is less than water freezing point (273.16 K). Compared to the standard snowfall simulation using
the Jordan (1991) scheme, the spatiotemporal distribution of accumulated snowfall over the WUS moun-
tains using the BATS scheme is very similar, with a few percent differences (Figures S7 and S8), but the
simple scheme leads to much lower snowfall particularly in the western and northern portions of the
WUS mountainous areas. Thus, using the Jordan (1991) and BATS schemes is expected to have consistent
snowpack simulation results, whereas using the simple scheme could result in larger underestimates of
SWE over the WUS mountains. Niu et al. (2011) pointed out that over regions where surface air tempera-
ture varies around the freezing point, snowpack simulations could be sensitive to the choice of snow–rain
partitioning schemes.

Overall, different precipitation datasets show important effects on SWE simulations, including temporal
evolution, peak SWE values, and dates, leading to large variations across model results. Model simulations
all capture the temporal pattern of observations in the WUS mountains with similarly high correlation coef-
ficients (r > 0.85). The WRF‐driven results are among the top two best performed simulations over the
Pacific Northwest, Sierra Nevada, MT‐ID‐OR, WY‐MT, and Nevada mountains with small NMB and RMSE
(Table S1), while the results based on the PRISM and/or L15 precipitation outperform the others in the

Figure 7. Same as Figure 6, but for snow depth (unit: m). Observations are from the SNODAS data. Spatial distributions of
model biases based on the other precipitation datasets are shown in Figure S9. The daily results are shown in Figure S10.
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remaining subregions. We note that the WRF‐driven SWE simulations have the smallest NMB (−9.3%) and
RMSE (26.8 mm) averaged over all the subregions, but it should be interpreted with caution since the over-
estimates in the Sierra Nevada mountains partially offset the large underestimates in the interior WUS
mountainous areas.

3.3. Snow Depth

Figure 7 shows the spatiotemporal distributions of SD from model results driven by different precipitation
datasets compared with SNODAS observations. Due to the model underestimates of SWE (section 3.2),
the simulated SD is consistently biased low across the WUS mountains during December to May, with
stronger underestimates at higher elevations (Figures 7 and S9). The spatial pattern of modeled SD biases
is similar for different precipitation datasets, with differences in their magnitudes (Figure S9). The biases
in the AZ‐NM mountains are small (<0.02 m) relative to the other subregions because of the small snow
amount. Different precipitation datasets have larger impacts on SD simulations in the western and northern
portions of the WUS mountainous areas (Pacific Northwest, Sierra Nevada, MT‐ID‐OR, and WY‐MT), with
variations of up to ~0.4 m. The WRF‐driven results show the smallest biases (up to ~0.2 m) in the four sub-
regions, followed by the PRISM‐driven results, while the NLDAS2‐driven results have the largest biases (up
to ~0.5 m). On the contrary, model results driven by different precipitation datasets are similar (differences
<0.1 m) in the interior WUS mountainous areas (Nevada, Utah, Colorado, and AZ‐NM), with slightly better
performance for the PRISM‐driven results (Figures 7 and S10). We note that the results based on the N15‐
95% precipitation also do not capture the high observed SD across the eight subregions. Moreover, even with
the slightly overestimated SWE in the Sierra Nevada mountains (Figure 4), the WRF‐driven simulations still
underestimate SD in mid‐winter and early spring, suggesting model deficiency in snowpack compaction and
metamorphism (Kim & Park, 2019). We find that the aforementioned SD bias patterns are valid and robust
when comparing with the UA SD reanalysis data (Figures S11–S13), except that the model underestimates
are smaller because of the lower UA SD values relative to SNODAS data.

Overall, model simulations all capture the temporal patterns of observed SD in different subregions (r >
0.9), though with systematic underestimates. The WRF‐driven results present the best performed SD
simulations over the Pacific Northwest, Sierra Nevada, and WY‐MT mountains with the minimum
NMB and RMSE, while the PRISM‐driven results have the smallest NMB and RMSE in the remaining
subregions (Table S1), where the WRF‐driven results show a fair performance. Averaged over the entire
WUS mountains, the WRF‐driven SD simulations show the minimum NMB (−16.7%) and RMSE (0.06 m),
followed by results based on PRISM and L15, whereas NLDAS2 leads to the largest NMB (−38.9%) and
RMSE (0.13 m).

3.4. Snow Cover Fraction

In contrast to the model underestimates in SWE and SD, the SCF simulations are systematically higher than
the MODIS/Terra observations across the WUS mountains mainly during October to May, with similar bias
patterns and magnitudes for model results driven by different precipitation datasets (Figures 8, S14, and
S15). Thus, precipitation has relatively small (differences <0.1) effects on SCF simulations in the WUS dur-
ing winter and spring compared with the large effects on SWE and SD simulations, which may depend on
the LSM (see discussions below). We find that the SCF biases are generally smaller in the Nevada and
Utah mountains than in the other subregions. The model biases tend to be small when the SCF reaches
the peak in January, while they are particularly large during snow accumulation and ablation periods
(Figure 8). Further analyses with the MODIS/Aqua and IMS SCF observations reveal that these model bias
patterns are valid and robust (Figures S16–S21), with slightly stronger and weaker model overestimates for
comparisons with the MODIS/Aqua and IMS data, respectively.

To understand the counterintuitive SCF and SD bias patterns (i.e., underestimated SD but overestimated
SCF), we investigated the SCF–SD relationship from observations and model simulations, since SCF is para-
meterized as a function of SD in the model. We find that the SCF increases too fast with the increasing SD
when SD is lower than 0.1 m in the model relative to observations (Figure 9), while the SCF–SD parameter-
ization (Niu & Yang, 2007) used in Noah‐MP also tends to produce higher SCF compared with other widely
used parameterizations (Figure 9). As a result, this leads to the model overestimates of SCF and points
towards urgent improvement of SCF formulation, which will be investigated in our future study.
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Furthermore, we also note that when SD is higher than 0.1 m, the modeled SCF is insensitive to SD and very
close to 1.0. This explains the relatively small precipitation impacts on the modeled SCF (as opposed to the
large impacts on SD and SWE) during winter and spring when SD is larger than 0.1 m (Figure 7).

Overall, model simulations have consistent temporal patterns with the observed SCF over the WUS moun-
tains (r > 0.9) but with systematic overestimates. Model results based on different precipitation datasets
show similar performance in each subregion, with NMB of about 20–30% and RMSE of about 0.1–0.2 in
the majority of subregions, except for smaller NMB (<16%) over the Nevada and Utah mountains and larger
NMB (up to 83%) over the AZ‐NM mountains (Table S1). In contrast to the poor performance of the
NLDAS2‐driven SWE and SD simulations, the NLDAS2‐driven SCF simulations on average perform the best
(slightly better than the others) across the eight subregions with a NMB of 20% and a RMSE of 0.08. This,
however, is due to the offset of two biased model factors (i.e., overestimated SCF from the biased SCF–SD
relationship and largely underestimated SD).

3.5. Surface Albedo

Figure 10 shows the shortwave (0.3–5.0 μm) diffuse (white sky) surface albedo based on MODIS satellite
observations and model simulations. The results and spatiotemporal patterns of direct (black sky) surface
albedo (Figures S28–S34) are similar to those of diffuse albedo and will not be discussed in detail here. We
find that model results driven by different precipitation datasets, with similar bias patterns and magnitudes
(Figures 10 and S22), tend to significantly overestimate the surface albedo by up to 0.15 over theWUSmoun-
tains (except for AZ‐NM) particularly during October to January, while the overestimates are smaller (less
than ~0.05) during mid‐winter to summer. This is partially due to the widespread overestimate in SCF across
the WUS mountains (Figure 7), since snow albedo is typically much higher than that of other land surfaces.

Figure 8. Same as Figure 6, but for snow cover fraction. Observations are from the MODIS/Terra satellite products. Spatial distributions of model biases based on
the other precipitation datasets are shown in Figure S14. The daily results are shown in Figure S15.
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Minder et al. (2016) also found a large positive bias in surface albedo caused by the SCF overprediction in the
central Rocky Mountains. Besides, the cold bias in surface temperature (see section 3.2 and Figure 6) could
indirectly contribute to the positive surface albedo bias through changing surface energy balance and
slowing snow melting, sublimation, and/or aging processes.

Moreover, Chen, Barlage, et al. (2014) showed that the snow albedo in Noah‐MP is also biased high com-
pared with MODIS and in situ measurements in the WUS mountains. The snow albedo overestimates
may be related to inadequate model treatments of processes such as aerosol contamination in snow (He
et al., 2018) and/or snow aging (Flanner et al., 2007) in Noah‐MP. Further analyses reveal that the visible
surface albedo in the model is underestimated during winter and spring (Figures S24 and S26), whereas
the NIR albedo is substantially (by up to 0.2) overestimated throughout the year (Figures S25 and S27),
which dominates and hence leads to the overestimates in shortwave albedo. This indicates that the modeled
snow albedo is biased low and high at the visible and NIR bands, respectively. As a result, the missing aerosol
contamination effect in Noah‐MP is not likely the reason for the shortwave albedo overestimate, since impu-
rities mainly reduce snow albedo at the visible band (He, Takano, Liou, Yang, et al., 2017). The positive NIR
bias is partially due to the inaccurate model treatment that assumes the same visible and NIR snow albedo in
the Canadian LAnd Surface Scheme, whereas the NIR snow albedo should be much smaller than the visible
one in reality (Wiscombe & Warren, 1980). Too weak snow aging in the model may also contribute to the
NIR positive bias, since aging processes result in larger snow grain sizes and thus smaller NIR snow albedo
(Flanner et al., 2007; Wiscombe & Warren, 1980).

In addition, the biases in background (snow‐free) albedo of different land surfaces and vegetation distribu-
tion could also contribute to the albedo overestimate in the WUS mountains (dominantly vegetated),

Figure 9. Snow cover fraction (SCF) as a function of snow depth (SD) on bare grounds (to avoid canopy interference) from
spatiotemporally colocated observations (black dots) and model results driven by the WRF precipitation (red dots)
over the western United States during Water Year 2013. The observed SCF and SD are from the daily MODIS/Terra
satellite products and SNODAS datasets, respectively. Also shown are four widely used SCF–SD parameterizations
(dashed lines) developed in previous studies, including the Niu and Yang (2007) relationship (used in Noah‐MP) with
snow densities of 100 and 200 kg m−3 (blue and orange), the Oleson et al. (2004) relationship (green; used in the
Community Land Model), and the Romanov and Tarpley (2004) relationship (magenta). Note that the Niu and Yang
(2007) parameterization with a snow density of 100 kgm−3 (black) is equivalent to the Yang et al. (1997) parameterization.
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because the modeled surface albedo with negligible SCF during summer is still overestimated by up to ~0.05.
For example, the albedo overestimates are much stronger at very high elevations (above ~3,000 m) than at
low‐elevation mountains (Figures 10 and S22), probably due to the uncertainties in vegetation
distributions and interactions with snow in alpine areas. Previous studies (e.g., Chen, Barlage, et al., 2014;
Essery et al., 2009; Minder et al., 2016) also suggested that the inadequate representation of canopy–snow
interactions (e.g., vegetation shedding effects, canopy radiative transfer, and below‐canopy turbulence),
which is common in most LSMs, could lead to large biases in surface albedo and snowpack simulations
particularly in alpine regions. This points towards the necessity of assessing and improving these
model processes.

Overall, different precipitation datasets have rather limited impacts on surface albedo simulations in this
study (Table S1), which consistently overestimate the shortwave albedo across the WUS mountains (except
for AZ‐NM). The NMB and RMSE of these simulations averaged over the eight subregions range from 12.4 to
14.4% and from 0.036 to 0.040, respectively.

4. Implication and Uncertainty

The preceding model assessments demonstrate that different precipitation datasets, with substantial cross‐
dataset variations over the WUS mountains, have important impacts on SWE and SD simulations but rela-
tively small effects on SCF and surface albedo simulations in Noah‐MP. Snowpack simulations driven by the
WRF precipitation are as good as (or sometimes better than) those driven by the statistically interpolated
precipitation (as summarized in Figures 11 and S35 and Table S1) in Water Year 2013. Thus, this study

Figure 10. Same as Figure 6, but for shortwave (0.3–5.0 μm) diffuse (white sky) surface albedo. Observations are from the
MODIS satellite products. Spatial distributions of model biases based on the other precipitation datasets are shown in
Figure S22. The daily results are shown in Figure S23.
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justifies that convection‐permitting modeling with proper configurations can provide adequately accurate
precipitation for high‐resolution snowpack simulations over the WUS mountains in a typical ENSO‐
neutral year. This further gives some confidence and reliability to the use of convection‐permitting
modeling in providing precipitation for high‐resolution mountain snowpack modeling under future
(changing) climate and particularly in high‐elevated areas without sufficient in situ measurements.

In addition to the precipitation impact, this study also reveals several areas that need to be improved in
snowpack–physics parameterizations in Noah‐MP (see section 3 for details). For example, the largely over-
estimated SCF in all simulations suggests a biased SCF–SD relationship in the model and requires an
imperative improvement. The positive snow and surface albedo biases in the model reflect inadequate
treatments of several key processes, including canopy–snow interactions, snow albedo and aging parame-
terizations, and background albedo of different land surfaces. Many of these problems are common in
LSMs (Chen, Barlage, et al., 2014; Essery et al., 2009). The albedo overestimates in the model could also
feedback to the cold bias in surface temperature over the WUS mountains (Figure 6), which may further
affect surface heat transport and energy balance, and hence snow melting and hydrological cycle (Chen,
Liu, et al., 2014). These highlighted LSM deficiencies will be systematically assessed and improved in
our future study.

Note, however, that several uncertainty factors may affect the analysis in this study. The observational
datasets used in model evaluation could be associated with uncertainties. For example, the undercatch pro-
blem related to SNOTEL precipitationmeasurements may lead to an underestimate of the negative biases for
those precipitation datasets in each subregion. This is probably the reason that a ~10% overestimate in the
WRF precipitation could lead to the best agreement with SNOTEL SWE simulations, for example, over
the Pacific Northwest mountains (Figures 3 and 4). Besides, different satellite and reanalysis products also
have nontrivial uncertainties and differences. For SWE, the UA reanalysis product provides relatively
accurate large‐scale distributions compared with in situ SNOTEL measurements but still tends to underes-
timate over mountains in Water Year 2013 (Figure S4). For SD, previous studies (e.g., Clow et al., 2012)
found that the SNODAS product performs satisfactorily in forested regions but poorly in alpine areas,
because the assimilated observations are primarily from subalpine forested regions. The SNODAS data also
tend to be higher than the UA SD reanalysis over theWUSmountains (section 3.3). For SCF, the three obser-
vational products (MODIS/Terra, MODIS/Aqua, and IMS) reveal noticeable differences, with the highest
and lowest values for IMS and MODIS/Aqua, respectively (Figures S14–S21). Despite the uncertainties

Figure 11. Top row: Normalized mean bias (NMB) of model simulations driven by different precipitation datasets (WRF,
PRISM, NLDAS2, L15, and N15‐50%) for precipitation, snow water equivalent (SWE), snow depth, snow cover fraction
(SCF), and shortwave diffuse surface albedo in eight subregional mountains (Pacific Northwest, Sierra Nevada, MT‐ID‐
OR, WY‐MT, Nevada, Utah, Colorado, and AZ‐NM) and the entire western US mountains (All WUS). Bottom row: Same
as the top row, but for root mean square error (RMSE). Note that the RMSE here is normalized to a scale of 0~1
through dividing the original RMSE by the maximum RMSE for each variable (precipitation, SWE, snow depth, SCF, and
surface albedo). The NMB and RMSE are from Table S1. The relative rank for the performance (NMB and RMSE) of dif-
ferent model simulations is shown in Figure S35.
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and cross‐product differences in observations, our analyses have shown that the spatiotemporal model bias
patterns are valid and robust (see section 3).

Besides, the uncertainty in LSM processes could also influence the results in this study, particularly for
snow‐related processes including snow cover change, canopy–snow interactions, snow albedo evolution,
and snow aging/metamorphism. For example, Chen, Barlage, et al. (2014) comprehensively compared six
commonly used LSMs in terms of seasonal snowpack simulations over the Colorado Headwaters region.
They found significant intermodel differences in snowmelt and sublimation efficiencies and systematical
biases from all the models in snow albedo and snow–canopy interaction simulations. Among these models,
Noah‐MP performed relatively better in simulating many of snowpack properties. Chen, Liu, et al. (2014)
pointed out that the differences in surface temperature and SWE simulations in the WUS mountains among
different LSMs are largely attributed to distinct rain–snow partitioning, treatments of snow albedo and
vegetation, and surface data. Gao et al. (2015) further showed that the uncertainty of soil heterogeneity
representations in Noah‐MP could also affect seasonal simulations of surface energy and water budgets over
snow‐covered Tibetan Plateau areas. Thus, it is necessary to quantify the model uncertainty by using an
ensemble of different LSMs and/or an ensemble of different physics options for key model processes in
Noah‐MP, which will be investigated in future study.

Another uncertainty associated with Noah‐MP is the model spatial resolution, which could be important to
snowpack and hydroclimate simulations over mountains. Clark et al. (2011) showed that model resolution of
sub‐kilometer is needed for LSMs to capture the subgrid variability of snow depth and SWE over mountains
particularly in melting seasons. Dutra et al. (2011) suggested that horizontal resolution of LSMs plays a
crucial role in characterizing snow cover in Northern Hemispheric complex terrain. Kim and Park (2019)
found that different LSMs (including Noah‐MP) with horizontal resolution of 30 km tend to have large
biases in snowpack simulations over Eurasianmountainous regions partially due to the relatively low spatial
resolution. Thus, accurate snowpack simulations by LSMs require systematical understanding and assess-
ment of model resolution effects.

In addition, the non‐precipitation atmospheric forcing used in this study could also be associated with uncer-
tainties. Liu et al. (2017) showed that the 4‐km WRF dataset captures the spatiotemporal patterns of
observed near‐surface temperature with a correlation of >0.96 and a typical cold bias (within ±3 °C) over
the WUS particularly in localized snow‐topped mountains during cold seasons. Wang et al. (2018) found
similar surface temperature bias patterns from 4‐km WRF simulations over the interior WUS mountainous
areas, with a spatial correlation of >0.96 and a RMSE of 1.5–1.8 °C. Nevertheless, these evaluations mainly
focused on surface temperature among the non‐precipitation forcing variables. Thus, a more systematic
assessment of the other non‐precipitation forcing variables such as downward radiation, which is sensitive
to cloud microphysics in WRF (Liu et al., 2011), is necessary in future studies.

Another uncertainty source is the resampling of model results into observational grids/sites during eva-
luation and the resampling of precipitation forcing datasets into the 4‐km model grids during simulations.
We used the bilinear interpolation for the resampling process, which is widely used in previous studies
(Henn et al., 2018; Jing et al., 2017; Liu et al., 2017). Further tests also showed that different interpolation
methods (e.g., nearest neighbor) give similar results and do not change the main model bias patterns and
conclusions in this study (not shown). We also note that the disaggregation of statistically interpolated
datasets from daily frequency to hourly frequency (section 2.2) could introduce uncertainty in our ana-
lyses, which however may only have very limited effects since we focus on monthly to seasonal timescales
in this study.

One limitation of this study is that we only focus on one typical ENSO‐neutral water year (2013) as a case
study, with the annual precipitation over the WUS in a near‐normal state (close to the regional climatologi-
cal mean value based on the NOAA precipitation database; see https://www.ncdc.noaa.gov/cag/). We note
that multiyear analyses are necessary to investigate interannual variabilities (e.g., wet, dry, and normal
years) and associated impacts on the results in this study, which will be included in a follow‐up study. In fact,
Liu et al. (2017) showed that the 13‐year convection‐permittingWRF simulations with proper configurations
generally capture the seasonal and interannual variabilities of observed precipitation over the WUS, with as
good performance as observation‐based interpolated datasets such as the N15 data. Wang et al. (2018)
further found that the 30‐year high‐resolution (4‐km) WRF simulations with proper configurations
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reproduce observed seasonal precipitation amounts and spatial distributions reasonably well over the
interior WUS mountains, which are almost equivalent to a reanalysis.

We should note that this study focuses on evaluating and comparing the performance of convection‐permitting
WRF simulations and statistically interpolated observational datasets in terms of precipitation and snowpack
simulations over theWUSmountains, where the WRF simulations show as good performance as (if not better
than) the interpolated observational datasets with comparable biases (section 3). Thus, we conclude that
convection‐permitting modeling with proper configurations can provide relatively accurate precipitation for
high‐resolution snowpack simulations over the WUS mountains in Water Year 2013. However, this does not
mean that the 4‐km spatial resolution is good enough for WRF to produce accurate precipitation in complex
terrain, since we do not assess the WRF performance with various spatial resolutions in this study, which is
an important subject for investigation in our future study. In fact, Ikeda et al. (2010) evaluated the sensitivity
of snowfall estimates in Colorado mountains to WRF model resolutions (i.e., 2, 6, 18, and 36 km). They found
that using resolutions of 18‐km and 36‐km underestimates snowfall by 10–30% during cold seasons
(November–April), whereas the 2‐km and 6‐km simulations show similar results andwell capture the accumu-
lated snowfall (biases <5%). Jing et al. (2017) further showed that using a WRF resolution (1.33 km) higher
than 4 km resolves finer structures of terrain‐relative winter precipitation in the interior WUS mountains
and has slightly better agreement with SNOTEL measurements with a stronger correlation and a
smaller RMSE.

Since this study uses the precipitation from only one WRF model realization in Water Year 2013, this may
introduce uncertainty to our analysis and results due to atmospheric internal variability. Recently, Gowan
et al. (2018) assessed precipitation forecasts from 10member 3‐kmWRF ensemble simulations with different
initial conditions during the 2016/17 cold season and found that the ensemble simulations generally capture
the spatiotemporal distribution of precipitation over the WUS mountains but with insufficient spread. We
note that it is important for future studies to conduct WRF ensemble simulations to quantify the impact
of internal variability on precipitation and snowpack simulations over mountains.

5. Conclusions

This study focused on assessing the precipitation impact on high‐resolution snowpack simulations over
mountains through comparing precipitation estimates from convection‐permitting modeling and
observation‐based statistical interpolation. We conducted 4‐km snowpack simulations over the WUS moun-
tains (divided into eight subregions) during a typical ENSO‐neutral water year (2013) using the Noah‐MP
LSM driven by precipitation from the convection‐permitting (4‐km) WRF simulation and four widely used
statistically interpolated datasets that are based on in situ measurements (i.e., PRISM, NLDAS2, L15, and
N15). We systematically evaluated the precipitation and model simulations of SWE, SD, SCF, and surface
albedo by comparing with a suite of observations.

We found substantial differences across the five precipitation datasets, particularly over mountains, with
strong spatial heterogeneity. The cross‐dataset differences are relatively large over the western and northern
portions of the WUS mountainous areas (i.e., Pacific Northwest, Sierra Nevada, MT‐ID‐OR, and WY‐MT),
with the highest (lowest) precipitation from WRF (NLDAS2), whereas the datasets are more consistent in
the interior WUSmountainous areas (i.e., Nevada, Utah, Colorado, and AZ‐NM). Further comparisons with
SNOTEL measurements showed that WRF well captures the observed precipitation over the Pacific
Northwest, Sierra Nevada, MT‐ID‐OR, and WY‐MT mountains with slight (~10%) overestimates in the
former two subregions, while the statistically interpolated datasets tend to underestimate in the four subre-
gions, with biases of <10% for PRISM and ~20% for NLDAS2. On the contrary, all the datasets consistently
underestimate precipitation over the interior WUS mountainous areas, with the best (worst) performance
from PRISM (NLDAS2) on average. This suggests the necessity of improving precipitation estimates in
these mountains.

Simulations driven by the WRF precipitation generally capture the observed SWE pattern across SNOTEL
sites over the western and northern portions of the WUS mountainous areas, while results driven by the sta-
tistically interpolated datasets all tend to underestimate SWE in the areas during winter and spring by up to
~20% (50%) for PRISM (NLDAS2) results. In the interior WUSmountainous areas, the SWE simulations dri-
ven by different precipitation datasets are systematically lower than observations by up to ~150 mm, though
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with well‐correlated temporal patterns. The PRISM‐driven results are the closest to observations in the four
subregions, while the WRF‐driven results give an average performance. Further analysis revealed that aver-
aged over the entire WUS mountains, the WRF‐driven results perform the best in peak SWE values and as
good as the PRISM‐driven results in peak SWE dates.

Due to model underestimates of SWE, SD simulations are consistently biased low across the WUS moun-
tains during December to May, although they capture the observed temporal variation. The resulting biases
based on different precipitation datasets are similar in spatiotemporal patterns but largely differ in the mag-
nitudes depending on subregions, with relatively strong differences in the western and northern portions of
the WUS mountainous areas. The WRF‐driven results show the smallest biases (up to ~0.2 m) in the areas,
followed by the PRISM‐driven results, while the NLDAS2‐driven results have the largest biases (up to ~0.5).
On the contrary, different simulations are more consistent in the interior WUS mountainous areas, with
slightly better performance from the PRISM‐driven results. Averaged over all the subregions, the WRF‐
driven (NLDAS2‐driven) simulations show the minimum (maximum) biases.

In contrast to model underestimates of SWE and SD, the SCF simulations are consistently higher than obser-
vations across the WUS mountains, with similar bias patterns and magnitudes for different simulations.
Model overestimates tend to be small when SCF reaches the peak in January, whereas they are particularly
large during snow accumulation and/or ablation periods. The mean biases for different simulations are
about 20–30% in the majority of the WUS mountains, with smaller values (<16%) over the Nevada and
Utah mountains and larger values (up to 83%) over the AZ‐NM mountains.

We found that model results based on different precipitation datasets, with similar bias patterns and magni-
tudes, tend to significantly overestimate the shortwave surface albedo across theWUSmountains (except for
AZ‐NM) particularly during October to January, due in part to the SCF overestimate. This is dominated by
the strong positive bias at the NIR band, likely related to deficient model treatments of snow albedo and
vegetation. The mean biases of different simulations range from 12.4 to 14.4% averaged over the
WUS mountains.

Overall, different precipitation datasets, with substantial cross‐dataset variations over the WUS mountains,
have important impacts on SWE and SD simulations but relatively limited effects on SCF and surface albedo
simulations, which may depend on the LSM. This study highlights that convection‐permitting modeling
with proper configurations can provide adequately accurate precipitation for high‐resolution snowpack
simulations over the WUS mountains in a typical ENSO‐neutral year, which has added values particularly
over regions without sufficient in situ measurements. This gives some confidence to the use of
convection‐permitting modeling in providing precipitation for high‐resolution land surface modeling of
mountain snowpack under future climate. However, this study also points towards necessary improvements
for snowpack physics in the Noah‐MP LSM, including the SCF parameterization, snow albedo and aging
treatments, and canopy–snow interactions.
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